Connecting the Dots: Towards Human-Level Grammatical Error Correction

نویسندگان

  • Shamil Chollampatt
  • Hwee Tou Ng
چکیده

We build a grammatical error correction (GEC) system primarily based on the state-of-the-art statistical machine translation (SMT) approach, using task-specific features and tuning, and further enhance it with the modeling power of neural network joint models. The SMT-based system is weak in generalizing beyond patterns seen during training and lacks granularity below the word level. To address this issue, we incorporate a character-level SMT component targeting the misspelled words that the original SMT-based system fails to correct. Our final system achieves 53.14% F0.5 score on the benchmark CoNLL-2014 test set, an improvement of 3.62% F0.5 over the best previous published score.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Impact of Immediate Grammatical Error Correction on Senior English Majors’ Accuracy at Hebron University

This study aimed at investigating the effects of grammatical error correction on EFL learners’ accuracy. Twenty-two male and female senior students were chosen randomly to respond to a questionnaire investigating their beliefs about immediate grammatical error correction.  Actually, the study was conducted in order to answer this question: what is the effect of grammatical error feedback on stu...

متن کامل

The Impact of Immediate Grammatical Error Correction on Senior English Majors’ Accuracy at Hebron University

This study aimed at investigating the effects of grammatical error correction on EFL learners’ accuracy. Twenty-two male and female senior students were chosen randomly to respond to a questionnaire investigating their beliefs about immediate grammatical error correction.  Actually, the study was conducted in order to answer this question: what is the effect of grammatical error feedback on stu...

متن کامل

Grammatical Error Correction with Neural Reinforcement Learning

We propose a neural encoder-decoder model with reinforcement learning (NRL) for grammatical error correction (GEC). Unlike conventional maximum likelihood estimation (MLE), the model directly optimizes towards an objective that considers a sentence-level, task-specific evaluation metric, avoiding the exposure bias issue in MLE. We demonstrate that NRL outperforms MLE both in human and automated...

متن کامل

Grammatical Error Correction of English as Foreign Language Learners

This study aimed to discover the insight of error correction by implementing two correction systems on three Iranian university students. The three students were invited to write four in-class essays throughout the semester, in which their verb errors and individual-selected errors were corrected using the Code Correction System and the Individual Correction System. At the end of the study, the...

متن کامل

The Effect of Focused Corrective Feedback and Attitude on Grammatical Accuracy: A Study of Iranian EFL Learners

Abstract The study aimed at investigating the efficacy of written corrective feedback (CF) in improving Iranian EFL learners’ grammatical accuracy. It compared the effects of focused and unfocused written CF on the learners’ grammatical accuracy. 75 EFL students formed a one control and two experimental groups. The focused feedback group was provided with error correction in tenses. The unfocus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017